
Communication Breakdowns in the Integration of
User-Centred Design and Agile Development

Silvia Bordin, Antonella De Angeli

Department of Information Engineering and Computer Science,
University of Trento, Italy

{bordin, antonella.deangeli}@disi.unitn.it

Abstract. Despite several calls for a more systematic integration of User-
Centred Design and Agile development methodologies, no satisfactory agree-
ment has been found yet. We articulate three breakdowns that may occur when
integrating these two software engineering approaches, namely a variable in-
terpretation of user involvement, a mismatch in the value of documentation, and
a misalignment in iterations. These themes emerged from theoretical grounding
for action research in a case study where UCD and Agile were integrated to
develop mobile applications for a user community. We discuss attempted strat-
egies for improving community involvement alongside the evolution of the pro-
ject team, composed of developers, designers, users, and customers. We finally
suggest ways to promote a receptive organisational culture for the integration
of UCD and Agile, drawing inspiration from participatory design and design
thinking, retaining the richness of community voice, and effectively timing the
combination of the two methodologies.

1 Introduction

In recent years there has been a growing interest in understanding the combination of
the user-centred design (UCD) and Agile development approaches, both in the hu-
man-computer interaction community and in the software engineering one. This con-
vergence would lead to a more holistic software engineering approach relative to the
application of one of the individual methodologies alone [42]. The advantage is two-
fold: on the one hand, Agile methodologies do not explicitly address usability or user
experience (UX) aspects in their understanding of the development process, although
valuing customer satisfaction [26, 50]. Yet, these aspects cannot be overlooked any-
more, since a carefully designed UX can provide an advantage over competing prod-
ucts [25]. In fact, despite its problematic nature and high costs [14], effective user
involvement results in high reward and several expected benefits including improved
quality, understanding, and acceptance of the product [14], and generally overall
“positive effects on both system success and user satisfaction” [27].

On the other hand, UCD does not explicitly address how the implementation of
the design should be performed, despite needing to ensure that no “design drift” [42]
occurs by maintaining a tight connection with the development. Agile methodologies
appear to fill this gap because of their capability to flexibly respond to change in
requirements, priorities and context, benefitting from a constant involvement of the

customer in the process. These features have facilitated their widespread adoption in
companies [11]. Furthermore, the intrinsically iterative nature of Agile implies con-
tinuous testing and incremental improvement of stable versions of a software product,
fostering an overall higher quality of the final outcome, and aligning in principle with
the iterative nature of UCD.

Despite these benefits, no satisfactory way to integrate UCD and Agile has be-
come established yet, if one exists. We contribute to filling this gap by reflecting on
our own experience as researchers and designers in a project where the integration of
UCD and Agile was used in mobile application development, not for a single business
customer, but for a whole community of users. By intertwining research into design
[18] and a literature review, we identified three communication breakdowns that are
likely to occur because of a mismatch in the formalisation of key themes in the two
approaches, namely the interpretation of user involvement, the value of documenta-
tion, and the synchronisation of iterations. We believe that the analysis of such com-
munication breakdowns can provide a distinctive analytical tool to facilitate a shared
understanding of the respective assumptions of UCD and Agile and of the potential
conflicts between them, thus supporting new kinds of collaborative work arrange-
ments.

Consistently with [6], we observed that all breakdowns are manifested at the work
process level, but that their solution requires changes in the organisational structure.
As a result, we propose some reflections on the need to foster the establishment of a
suitable and receptive organisational culture in order for an effective integration of
UCD and Agile to occur; these considerations are inspired by the participatory design
and design thinking approaches. We also reflect on how to retain the articulation of
the needs and positions expressed by a whole user community and, in a more process-
oriented perspective, on which is the most suitable timing to integrate UCD and Ag-
ile, taking into account the peculiarities of the two methodologies.

2 State of the art

User-centred design is an umbrella term used to denote a set of techniques, methods,
procedures and processes that places the user at the centre of an iterative design pro-
cess [41]. As stated by Norman already thirty years ago, when UCD was struggling to
establish itself in a predominantly technology-pushed environment, “the purpose of
the system is to serve the user, not to use a specific technology, not to be an elegant
piece of programming” [40]. Agile also presents a variety of methods advocating a
lightweight approach to software development where rapid and flexible adaptation to
change is the key to maximising customer satisfaction. Such adaptation is achieved
through a process of continuously improving, evolutionary development carried out
by a self-organising, cross-functional team that communicates through face-to-face
and often informal meetings rather than through formal documentation. Agile meth-
odologies are grounded on the principles and values listed in the Agile Manifesto [3],
which, among other things, highlights the concept of customer collaboration: the
customer is in fact expected to be actively involved in the development process, alt-
hough to a variable extent depending on the specific form of the methodology in

practice, and to have the power to steer the direction of the project by intervening on
the requirements according to his/her possibly changing needs [55].

We highlight that both UCD and Agile can be instantiated in a large variety of
practices: this makes it difficult to present a definitive position on the integration of
the two approaches. However, in the next sections we will discuss three themes in
particular that may have diverging interpretations in the two methodologies, namely
user involvement, documentation, and synchronisation of iterations. These themes,
which emerged from a case study and were then corroborated through a literature
review, are most likely to cause communication breakdowns, i.e. examples of “dis-
ruption that occurs when previously successful work practices fail, or changes in the
work situation (new work-group, new technology, policy, etc.) nullify specific work
practices or routines of the organizational actors and there are no ready-at-hand re-
covery strategies” [6]. Communication breakdowns occur in the absence of a shared
meaning among team members and can be counteracted by designing for translucence
(i.e. the combination of visibility, awareness and accountability); shared meaning is
nurtured by grounding (the communication process aimed at the creation of mutual
knowledge, assumptions, and beliefs [13]) and consolidated by knowledge sharing.

2.1 Integration

A growing interest in understanding the combination of UCD and Agile is emerging,
as witnessed for instance in the literature reviews performed by Jurca [25] and Salah
[42], which consider 76 and 71 papers respectively. The papers were selected based
on their focus on methodologies for integrating UCD and usability engineering with
Agile approaches, with an accent on the software engineering community, to which
the authors belong. Results suggest that much literature on the topic consists of “expe-
rience reports”, with “few rigorously conducted studies in Agile-UX” [25] or system-
atic guidelines. Moreover, that research is dispersed over a large number of venues
and is likely to not fully reach its intended target community. Both studies conclude
that there is a need for design and development methodologies that can “draw on the
best practices and tools of the two disciplines” [50].

Attempts at integrating the practices of UCD and Agile development have been
made over time [e.g. 12], leveraging the similarities of the two methods while mitigat-
ing their differences. An approach called Agile usability is proposed in [56], enriching
the Extreme Programming methodology with several artefacts drawn from HCI each
used in different moments. Similarly, some experts suggest applying discount usabil-
ity methods by involving a very small number of users (one to three), with frequent
testing and with constant updates to the team and the clients [33]. Others propose to
lighten UCD approaches in order to keep the pace of Agile iterations [35]: for exam-
ple, the presence of an onsite customer is reported as a common practice in Agile
projects to facilitate the communication of requirements to developers [50]. Ungar
and White [54] describe a case study in which the application of the design studio
approach might effectively bridge UCD methods and Agile ones, such as Scrum: this
approach envisages a rapid, iterative process of ideas generation, discussion, and
reconciliation into a unique design concept to be implemented. Lean UX [21] is a
practitioners’ proposal for the integration of UCD practices into Agile; yet, as argued

in [30], the organisation applying this methodology has to be ready for it, developing
an appropriate internal culture, which is often a non-trivial condition to achieve.

While acknowledging the large and robust common ground [13] that the two ap-
proaches anyway share, in the next paragraphs we will introduce three communica-
tion breakdowns [6] that are likely to affect their integration.

2.2 User Involvement

The concept of user-centredness is complex and covers a broad range of perspectives,
which according to [24] are articulated around four dimensions: user focus, work-
centredness, involvement or participation, and system personalisation. Different and
at time conflicting interpretations of processes, practices, and goals exist within these
macro-areas. The dimension of involvement is particularly interesting for our work as
it describes different approaches related to the user role in design, ranging from an
informative role (users act as providers of information and as objects of observation)
to a consultative role (users comment on predefined design solutions) to a participa-
tive role (users actively take part in the design process and have decision-making
power regarding solutions) [14]. User involvement in the informative/consultative
role stresses a functional empowerment of users in its focus on designing usable and
satisfying systems; this differs from the participatory design perspective, which aims
at a democratic empowerment [5] by allowing people to shape the tools which will
affect their work or personal life.

In UCD, user-centredness is typically described in this continuum between in-
volvement and participation [24]: user needs and activities are thoroughly researched
and understood by the design team upfront or in direct collaboration with a small
sample of selected users. Agile techniques also encourage the customer’s collabora-
tion throughout the development process; however, in the Agile terminology, the
notion of customer is often blended with that of a user [1], with contrasting interpreta-
tions of the distinction between these two concepts and of whom is supposed to take
this role. Most Agile methods in fact define the customer as a representative of the
end users who has direct and regular contact with them [e.g. 26, 31, 45]. However,
some authors report that it is infrequent for a real end-user to act as a customer [12,
48], subsequently questioning the extent to which the customer can actually represent
the real user and his/her needs [4, 50]. Others [12] recommend that the customer’s
engagement should also be supported by a number of other roles within the team,
such as a proxy user, or that the customer role should be filled by one or more mem-
bers of the product team [51], since customers are part of the release planning and
iterative development process [4]. The duties of the customer, in their fuzzy defini-
tions, include acting as the voice of the end user, evaluating performance and helping
to prioritise and plan cycles and releases [43]. This responsibility can turn out to be
overwhelming [31] and some authors argue that there is no guidance on how the cus-
tomer should be able to articulate his/her needs in order to communicate the require-
ments to developers [4, 46].

Indeed, the very same capability of users to articulate their own working practices
or to design a system can be questioned [4]; furthermore, because of a mutual learn-
ing effect, some authors claim that the more the “representative” customer becomes

part of the development team, the less useful he/she is as a user surrogate [4, 23]. The
same authors also propose a distinction between the user and the customer: the user
interacts with the system being designed directly and uses it to accomplish his/her job,
while the notion of customer is broader: understanding the users is needed to achieve
a good design, understanding the customer is needed for its acceptance.

In general, given all these considerations, it seems that the integration of user needs
within the feature-oriented Agile development process has not been fully achieved
yet; as concluded in [50], one of the reasons is “a lack of tactics and practices” within
organisations.

2.3 Documentation

Independently of the key issue about who is expected to be a team member (develop-
ers, designers, usability experts, users and/or customers) in an integrated UCD/Agile
project, both methodologies place an emphasis on frequent communication among
team members to support project awareness. However, while UCD has produced a
number of design tools to support communication with developers, such as scenarios
or personas, Agile tends to emphasise face-to-face informal communication. In a
UCD process, formal documentation may record design rationales, list user and inter-
face requirements, and provide the ground truth about the overall design vision, be-
coming “crucial for estimation and implementation efforts” [41]. Therefore, the ex-
perts will devote an important amount of time to analysing users and their tasks and
then iteratively collecting feedback; these activities need to be performed and docu-
mented before the implementation phase begins.

Conversely, in Agile development the use of documentation is diminished [34], to
the point that one of the principles of the Agile manifesto [3] states that “the most
efficient and effective method of conveying information to and within a development
team is face-to-face conversation”. In [10], three types of collaborative work to rea-
lign designers and developers are identified: all of them are oral and the use of docu-
mentation is not even mentioned. Because of this, rather than having requirement
documents, the Agile approach incorporates the user (or his/her representative) direct-
ly in the development team. There is anyway an on-going discussion within the Agile
community concerning the fact that documentation should not be discarded altogeth-
er, especially given the complexity of modern systems, and that it just needs to be
adapted to more dynamic processes [47]: the argument is hence about what is to be
documented [47], how, and for what purposes (e.g. supporting organisational memory
and communicating with stakeholders [2]). Nonetheless, often usability goals are
documented in a very general way, relying on an oral common understanding instead
[11]: this may however make a quantitative evaluation of such goals problematic and
make the fulfilment of the “big picture of UX” more difficult [28].

2.4 Synchronisation of Iterations

One of the generally accepted principles of UCD defines it as iterative [22]; Agile
development is instead intended as being not only iterative, but also incremental [43].

A further challenge is about how to synchronise the periods of UCD and Agile [42,
25], and in particular whether the two methodologies should proceed in parallel or
not. Several proposals envision designers and developers working closely together in
a synchronised manner. For example, in [37] a daily interaction between them is de-
fined as “essential” for a successful outcome of the project; in [10], their collaboration
is defined as informal, oral and ad-hoc. Schwartz [46] found that the development
pace was better maintained in a project with an usability expert than without one: in
addition, the former situation gave rise to pair designing, in which the developer and
the usability expert worked together and learned from each other, thus improving HCI
practices and knowledge in the whole team and in general resulting in a better project
dynamic.

Other researchers propose to keep UCD and Agile separate instead, while just
synchronising their periods of iteration [12] so that design stays ahead of develop-
ment. This is the interpretation of Agile usability given by Nodder and Nielsen [39],
who describe a process where design and development belong to two parallel tracks
and the former feeds the latter with progressively refined user requirements, proto-
types and tests. Similarly, in [51] the author recommends that the lengths of the itera-
tion of the design and development tracks have to be carefully balanced so as to allow
some advance for the design activities. Another successful example of dual-track
approach is described in [37]: the author reports that, in order to accommodate the
different paces of UCD and Agile, the timing and frequency of data collection, rather
than the methods, changed considerably.

A distinct issue concerns the amount of work, and specifically design, to be per-
formed before the implementation phase begins [17]. UCD encourages the team to
understand their users as much as possible before writing code [12]: experts will de-
vote an important amount of time to analyse users and their tasks in order to create the
interface specification document and then to iteratively collect feedback from users
through various usability techniques. Despite being time-consuming activities, data
collection and analysis are nevertheless considered to be necessary to inform imple-
mentation. Conversely, given its feature-oriented nature and the emphasis put on early
software delivery, Agile methods are largely against an up-front period of investiga-
tion at the expense of writing code [12]: they capture “user stories” [1] instead, that is
high-level requirements to be addressed at the beginning of each iteration, therefore
reducing upfront work to a minimum. Still, several authors advocate a solid under-
standing of the user [4] also in terms of time and effectiveness and suggest the rele-
vance of an “Iteration 0” (e.g. [42, 51]) in which upfront design and requirement
elicitation are carried out, with some degree of compromise about the duration of such
activities, in order to ensure the establishment of a holistic design vision that can be
shared within the team [28].

Related to this, we underline that Agile approaches are prone to focusing on the
details at the expenses of the overall project vision [13]. In order to mitigate this, the
responsibility for carrying the UX vision forward should be explicitly shouldered by
the management and the organisational context [11, 28].

3 The Smart Campus project

A large set of observations on the potential and challenges of the integration of UCD
and Agile development derive from our experience in the Smart Campus project,
where the two methodologies were applied to mobile application development for a
community of users. Smart Campus started in 2012 in the context of establishing a
living lab in the Province of Trento and lasted three years. The University campus
was selected as the playground to experiment with a vision emphasising the role of
the community as builder of services. The project aimed at creating an ecosystem that
could foster students’ active participation in the design and development of services
for their own campus [16]. A service infrastructure was the main technological out-
come of the project [15, 16, 36]; on top of that, a set of eight mobile applications
(Figure 1) was developed to help students with a variety of professional (tracking
university achievements; managing email), social (creating and managing groups;
getting information about events in the city), and private tasks (travelling through the
city; keeping a multimedia diary; receiving information about the university cafete-
rias) [8].

Fig. 1. The Smart Campus mobile applications set.

UCD and Agile were chosen as useful methodologies for a project that needed a
fast delivery of the product while ensuring a focus on user needs [7]: the former was
applied to interface design, the latter was used to build the service architecture. The
project team consisted of approximately 25 members, including interaction designers
and software engineers. Furthermore, several groups of students were involved,
reaching over 500 people in total; they played the role of users or customers at differ-

ent points of the project. Approaches for community engagement changed as the
socio-technical infrastructure was evolving, as discussed in [16]. Some of these stu-
dents were directly included in the living lab as interns, in a participatory develop-
ment effort, while others played a consultative role commenting on the applications as
they were developed. The dialogue between developers, designers and users was
mediated by a set of communication channels including a forum, a beta testing com-
munity in Google Play, and social networks (i.e. Twitter, Google+, Facebook,
LinkedIn). In an effort to promote the sustainability of the project [53], the code was
released as open source on GitHub, a platform for collaborative development.

3.1 Project Methodology

Fig. 2. Different examples of low-fidelity prototypes for the Smart Campus applications.

During the first year of the project, design and development proceeded on two parallel
tracks: design focused on conceptual work and community engagement, while devel-
opment focused on the service infrastructure. Several design activities such as focus
groups, diaries, online ethnography and workshops were put in place, engaging 60
bachelor and master students overall; these activities aimed to investigate the life of
the student population and understand the design space of the project. At the same
time, we also performed a benchmarking of mobile apps offered by other universities
and studies of online students communities. This information was used to build per-
sonas, scenarios, and later storyboards and sketches that informed the vision of Smart

Campus as a toolbox containing separated but interrelated services for students’ use
(Figure 2).

In parallel, the backend functionalities of the service platform began to be devel-
oped following a rather traditional, incremental, and non-Agile approach. The apps
were then released to a growing community of campus students, starting from 90
students on the Human-Computer Interaction course for bachelor students within the
local Department of Computer Science. This first group of users was also provided
with a smartphone and a paid data plan in order to ease the testing, as few of them had
a suitable device and we aimed to seed a user community [16].

These initial UCD and development techniques required both time and documen-
tation. However, as the technological infrastructure became more mature and de-
mands for more frequent app releases became more urgent, the management realised
that a much faster development pace was needed: therefore, almost a year into the
project, the development team quickly transitioned to an Agile development method-
ology, namely Scrum. Since the team had little experience with this approach, the
CTO read manuals about how to implement it, involving the management in this
training as well, and then briefly introduced the Agile practices to the team during a
sample sprint planning meeting. Scrum was not applied by the book, but it required
accommodating the peculiarities of the existing team: for instance, the CTO also took
the role of the Scrum master, while the rest of the project management kept preroga-
tives such as maintaining relationships with the University and administrating person-
nel and funds; appointed “champions” of the apps, i.e. members of the development
or management who were responsible for a specific app and in charge of tracking its
progress, became different product owners; interns were incorporated as on-site user
representatives (at least in principle, as we will see later).

The transition to Agile disrupted the alignment between the design and the devel-
opment team: even though they were both following iterative approaches, it soon
became clear that the iterations required by UCD were longer than those envisaged by
the Scrum sprints, which were set to last one or two weeks. In fact, the design team
was supposed to be ahead of the development team by at least one cycle [52], in order
to be able to transfer prototypes and requirements to the development team in a timely
manner. At the same time, however, designers had to face a large amount of qualita-
tive feedback continuously coming from the user community, analyse it, and prioritise
extracted requirements. A ticket was created in an internal system for most relevant
user suggestions; designers would prepare design solutions and then pass them on to
the developers for the implementation.

Overall, the project needed to find a suitable collaboration protocol between the
design and the development team that could effectively accommodate the feedback
coming from the community while not impeding the development pace. To this end,
we tried several approaches to maximise team communication, which for our conven-
ience will be classified based on their methodological structure as formal, semi-
formal, and informal approaches.

The formal approach. The formal approach was encouraged by the management
and consisted of passing on any design issues and decisions in a written manner: this
conflicted with the prescriptions of the Agile methodology. The first attempt was to
use an internal wiki for collaborators, where a table of issues to be solved was main-

tained: this method was good for keeping track of all the problems encountered, but
was not a self-explanatory procedure, as it often required additional information to be
provided through different media as shared documents. The wiki was eventually
abandoned in favour of maintaining a presence on GitHub, in order to promote open
source contributions to the project and encourage the interventions of the community
directly related to the code. This approach proved somewhat restrictive for designers
as GitHub is used mostly to report bugs or issues with software behaviour, but it is
not meant to support the tracking of progress about the overall UX design or the us-
age by people without technical expertise.

The semi-formal approach. In the semi-formal approach we include different kinds
of meetings. Notably, none of them directly involved any user representatives with
the exception of the students involved in the living lab, who were actively contrib-
uting to a participatory development approach. HCI meetings usually gathered the
whole design team and the champions of the apps. Matchmaking meetings were usu-
ally held once every two weeks and involved all of the Smart Campus staff (manag-
ers, developers, interns and designers): during these meetings, project landmarks and
dates were discussed, problems brought up, and work divided. Scrum meetings basi-
cally replaced matchmaking ones when the team adopted an Agile approach. They
were quick daily meetings, usually held early in the morning, aimed at checking the
status of the project and estimating how a specific task was progressing. In turns, the
members of the group involved in the Scrum reported about any problems they en-
countered, tasks performed and plans for the day. The Scrum Master coordinated the
activity by annotating this information on a progress chart to check the status of the
work and the feasibility of set goals.

The informal approach. The informal approach consisted of face-to-face meetings
between a developer and a designer, often resulting in pair designing, i.e. in the two
working together in close collaboration to modify and improve the user interface
during the sprints. In line with the Agile development spirit, these meetings produced
no documentation. Similarly, at times developers engaged in quick chats over instant
messaging systems such as Google Hangouts or Skype. In general, this approach was
applied to solve specific user interface issues, not to address overarching UX themes
such as for instance transitioning to the most recent look and feel suggested by the
Android design principles.

The mixed approach. Mixed approaches, between semi-formal and informal, were
used in specific situations like the so-called crazy weeks, i.e. accelerated sprints where
the whole team concentrated its efforts in order to reach a mutually agreed goal. This
method was used two or three times in a year, usually to enhance aesthetics and func-
tionalities when envisioning an immediate release of the apps. At the beginning, de-
velopers, managers and designers met to discuss on “show-stoppers”, i.e. issues that
would seriously compromise the usability of the app and would not allow its release;
each issue could include different tasks, such as prototyping and development, and
was usually assigned both to a designer and a developer, in a pair designing effort.

Despite this wealth of attempted collaboration strategies, the project team felt that
none of them was actually fully satisfactory in integrating design and development
activities. As problematic situations emerged in the project, we referred to literature in
order to understand whether the issues were specific to the project or whether they
had also been encountered elsewhere. We therefore combined two complementary
approaches to research into design [18]: a bottom-up one, aimed at extracting themes
from the analysis of project data, and a top-down one, aimed at consolidating such
themes through a substantial literature review.

3.2 Data Analysis

The data reported in this work were collected through a number of different sources,
including formal interview studies involving team members and the student commu-
nity, and personal observations of the authors, who participated in the project respec-
tively as an interaction designer and the principal investigator. In claiming the value
of the findings derived from personal observations, we refer to the concept of “auto-
biographical design” [38]: while its authors define it as "design research drawing on
extensive, genuine usage by those creating or building the system", we intend autobi-
ographical data as drawing on the same kind of usage, but this time by those creating
or building practices rather than a system.

A first interview study was performed in summer 2013 after an intense period of
Agile development to investigate the perception of user involvement in the project,
also focusing on issues of team coordination and awareness. It engaged 20 people: 7
staff members (developers and HCI researchers) and 13 students with different levels
of involvement with the project. A second study was carried out in spring 2014, fo-
cusing on the project documentation and the practices to create and use it. Among the
12 interviewees, 7 were developers in the Smart Campus lab, while 5 were students
involved in the participatory development activities.

To decrease possible social bias, all interviews were conducted by a researcher ex-
ternal to the project. Audiotapes were transcribed and iteratively coded by the authors
through thematic analysis [49]; double coding was performed on 25% of the tran-
scripts yielding an inter-rater reliability of 93%. Interview analysis was conducted
after the end of the project, in parallel to the literature review previously presented.
Citations in the next paragraphs will be attributed to interviewees as follows: Dev for
developers; Des for designers; Int for interns; Stud for students in the community.

4 Results

This section is composed of three parts focusing on the communication breakdowns
previously introduced. For each of them we articulate the strategies employed in the
project and discuss their perception according to the team.

4.1 User Involvement

The user and the customer were clearly differentiated in Smart Campus; we fully
embrace the vision outlined for instance in [12, 48], according to which these figures
denote different targets of design interventions. The customer of the project was the
local University: in line with the funding scheme of the project, they contributed the
case study and some personnel time. Most of the allocated personnel were appointed
either from high-level administrative managers in charge of Education and IT, who
participated in formal meetings with the project team, or from academic staff, who
supported the research work leveraging on a richer variance of communication con-
texts by keeping in close contact with the Smart Campus team. The relationship with
the customer was always complex and led to a partial dismissal of the project result
after the ending of the financial support from the funding body. The fact that the Uni-
versity is no longer sponsoring the Smart Campus apps as we write is a clear sign that
the communication with the customer failed during the project, reinforcing Bjørn and
Ngwenyama’s considerations [6] about the organisational structure being the main
responsible for the failure or success of working practices. However, the discussion of
this topic is outside the scope of this chapter.

User involvement in the Smart Campus project ranged along the continuum be-
tween involvement and participation [24] and evolved over a period of three years,
where we attempted to transform our users (the students in the campus) into a com-
munity of service developers [16]. Students were in fact involved in the project ini-
tially with an informative role, for example through questionnaire and diary studies,
then with a consultative role when they acted as beta testers of the apps developed by
the lab, and finally as participants in the development of their own apps when inte-
grated as interns in the project team. This process was successful in that it delivered a
set of eight mobile apps, two of which entirely designed and developed by the student
community, which were adopted in everyday life often with positive evaluations.
Despite the convenience of our user target, especially as both authors fulfil education-
al duties in the local University campus, the relationship with the students often led to
difficulties and to the need of reconciling the meaning of user involvement between
the designers and the developers. The communication with the students therefore
spanned through the continuum of our interventions, from a formal approach (when
students were required to evaluate the apps as part of a coursework) to a very infor-
mal one, as in frequent corridor conversations or short text messages.

During the project we highlighted a variable and at times contrasting perception of
user involvement between designers and developers. In particular, the typical break-
downs occurring in the integration of UCD and Agile were exacerbated by what the
community role actually entailed: this became evident at a management meeting in
April 2013. The discussion regarded the case of a student who was particularly active
in the forum and willing to contribute to the development, but was perceived as pat-
ronising by the developers, who reported discomfort during interaction; the discussion
was then extended to the overall communication between developers and users,
which, especially over the forum, was not always smooth, sometimes leading to
communication breakdowns in a literal sense:

Dev2: “There are different kinds of users: on the one hand they are really careful
or even shy and on the other hand they are kind of arrogant […] I prefer not to an-
swer and wait for someone that replies in a better way than I would.”

 This opened a reflection on the role of students in the project and the perception of
participation within the Smart Campus community. To further explore this kind of
issues, the first interview study was organised. All members of the Smart Campus
team reported being aware of the project aiming towards participatory development
[16] and having a positive attitude towards the active participation of the users’ com-
munity in the project. However, when probed at a deeper level, it became evident that
the concept of involvement was intended more as informative, rather than participa-
tive [24]: instead of becoming true partners in the design process, students were ex-
pected to just express their opinions, which had to be taken into account by the lab.
Especially in the case of developers, therefore, users were perceived as being re-
quirement providers and application testers (i.e. informants), without any active role
during the design and development stages:

Dev2: “External persons can suggest ideas, report bugs and the team has to listen
to them and consider them for the next steps.”

Dev2: “They are free to suggest ideas and even concrete improvements and we do
take the information seriously, because they will use the application and that’s why
their opinion is important.”

A designer indeed explicitly raised a concern about the lab understanding of partic-
ipation:

Des4: "Sometimes I think that we don't listen very much to the students. We need
feedback, we have to make more effort to understand and to listen to their opinions
[…]. Sometimes we take decisions without a real participatory design approach. We
take the decisions from the top of the hierarchical organization. This is only for mak-
ing it easier and faster. We can not listen to every little thing from the students."

We can see from these quotations that the perception of the community role re-
tained some UCD/PD elements in designers and some Agile elements in developers:
for instance, developers maintained an understanding of the customer as the funding
agent whose requirements, although changing, were binding; on the other hand, de-
signers expressed unease at their limited possibility to fully take into account the
needs coming from the community. Yet, the compromise resulting from the integra-
tion of the two methodologies was unclear. In fact, the community was not under-
stood as a proper customer, as it was not expected to actively participate in the man-
agement of the development process (for instance, it was not part of the community’s
duties to prioritise needs) and it appeared unable to adequately articulate its require-
ments for developers. On the other hand, the community lost part of its prerogatives
as a user, since the management ultimately decided how to steer the direction of the
project.

Indeed, students themselves were aware of the importance of their involvement,
but they still confined it to a role of informants and consultants rather than of active
participants who could effectively modify the outcome of the project:

Stud2: “The impact is strong: most of the participants are checking [Smart Cam-
pus] out and using at least one app frequently.”

Stud10: "As a tester, you give me the smartphone and I can give you feedback. I
can do something in exchange".

This attitude was evident also in the forum, which counted approximately 500 us-
ers who wrote about 2000 posts: over 67% of threads reported problems and issues
with the applications or the smartphone, and only 27% reported suggestions for the
evolution of the project. This in turn raised different expectations about what kind of
contribution users could provide and what kind of feedback needed to be returned to
them, in a vicious circle: being users’ posts seldom focused on proposals for im-
provement, developers increasingly consolidated a perception of the community as a
group of testers, therefore not entirely committing to acknowledging the actual sug-
gestions for functionality enhancement; as a result, such kind of contributions seemed
to appear less over time.

4.2 Documentation

As exemplified by the question asked by Dev1: “What do you mean by document-
ing?”, documentation did not appear to have an intrinsic value as a communication
tool, neither for developers nor for interns; the first ones wrote it when explicitly
required, the second ones mainly because they had to report to supervisors.

Dev3: “I document some piece of code […] only if somebody asks me to because it
is needed by others. Otherwise it’s rare that a developer comments his code.”

Dev4: “I document my development process sometimes, because it depends on the
time that I have… If I have time, I spend some time to write a document”

To further investigate this aspect, the second interview study was organised. Since
the development team was collocated and consisted of a limited number of members,
writing documentation became just overhead in practice, as developers found it argu-
ably quicker and easier to just meet and discuss in person within the office:

Dev7: “For the discussion between developers with different points of view, it’s
quicker to go to the office with the other developer and discuss it.”

One of the interns however explicitly realised that this tended to create a closed,
connected, fast-paced group:

Int3: “In my opinion, developers should participate in the forum, that is talk to the
users without staying in a closed group. This would be counter-productive, as we
[developers] meet every day.”

The limited actual documentation was typically written and located within the code
in the form of comments; developers shared more extensive online documents in case
they needed to describe a complex process or provide more detailed information on
what they did to a colleague who was meant to take over their work. Graphical docu-
mentation was used to discuss interface design, to align work between designers and
developers and to supplement the written one in illustrating complex processes; it was
usually transient and kept for personal use.

Dev5: “Well, the code is open source, so… they read my code and in the middle of
my code there is some comment”

Dev5: “If it’s a UI feature, I try to draw it… But I do not share this kind of sketch-
es with anyone. It’s just for me… when I complete the feature, I throw it away.”

The attitude with regards to documentation instead changed in the case of design-
ers or of interns who did not typically share the same space and time in the lab any-
more due to academic commitments or end of their internship: they tended to habitu-

ally use documentation to organise and manage their progress. Designers regularly
shared reports and reflections through Dropbox and online documents; these interns
reported first using everyday objects such as post-its and then moving to shared
online documents as well as their collocation became less frequent.

Int5: “At first we used a lot of post-its that we would stick on the whiteboard and
we work there as a group… we wrote all the points to develop, what one would do,
what the other would do… when I basically remained the only one working there, I
started to use shared online documents to communicate with other developers… and
then that became the main communication method… The same things that we would
write on post-its, we would then write on these shared documents.”

The introduction in the team of several members (typically students) who worked
during different shifts, remotely, or from different locations however reduced the
chances of non-mediated communication while increasing the need for a shared, ac-
cessible knowledge base: yet, how to effectively support such need while leveraging
on existing working practices remained an open point.

In general, the interviews showed how a series of attempts at effectively supporting
documentation yielded contrasting results. In the following paragraphs we summarise
what happened with reference to different articulation platforms used to facilitate the
communication within the project team (developers, designers, and interns) and be-
tween the team and the user community.

Developers’ Wiki. This platform mainly hosted technical documentation for internal
use. Developers reported checking it almost exclusively to read information; active
contributions had been generally limited to the first steps of the project, as the lack of
guidelines on how to structure the wiki rapidly led to a very confusing articulation
which finally resulted in the CTO of the project being the only one “legitimated” to
write content in it. Developers stated that they seldom edited minor points, typically
to update sections concerning the tasks they were working on:

Dev1: “I know that on the Smart Campus Developers’ wiki every library has doc-
umentation… these are done by G. and R. [CTO]”

GitHub. Both interns and developers recognised in principle the relevance of docu-
mentation for involving external developers from the community and promoting the
project, and some acknowledged that it should be placed in GitHub along with the
code; in practice, however, developers did not use GitHub for documentation beyond
the comments attached to code commits.

Dev4: “If I use open software, it’s more important to publish the code and the
documentation because if a developer needs to use my code he can learn where it is,
how it works and so.”

In fact, GitHub was considered to be quite cumbersome to search and likely to be
too “geeky” to be widely used by the users’ community.

Dev3: “I find [GitHub] quite hard to navigate, because there is development, tips,
hints… there should be some guidelines”

Forum. While the wiki and GitHub were more oriented to facilitating communica-

tion within the Smart Campus team, this articulation platform was aimed to open a

dialogue between the project team and the community of users and was perceived as
more suitable for this purpose.

Int1: “If [the forum] is for documentation purposes within the developers and the
community, it can make sense. If it is just between me and the other people of the
group, I don’t think so.”

One of the students claimed that the forum could indeed be a good tool for support-
ing the open source project and discussions related to code:

Stud1: “It would be important [to have a dedicated section for developers] to help
each other and exchange information and opinions about code and development.”

Yet, while students perceived the forum as a place for discussion, developers saw it
just as a unidirectional informative tool from the users to the lab and did not perceive
it as a suitable support for shared project documentation. Because of this, and despite
the forum being acknowledged as a rich source of information, it was not seen as a
suitable support for documentation, but at most as a supplement.

Dev1: “[The forum] It’s not an instrument designed for that… the documentation
should be more structured documents where I can navigate like in a tree and search…
It’s something that is missing in the forum, but it’s not designed for that”

Int4: “If there is the official documentation and you want to go deeper into a topic,
then you can visit that section of the forum…”

Moreover, developers interpreted engaging in conversations on the forum as extra
work that got a relevant priority only if it was related to their current tasks:

Dev2: “[I use the forum] only to receive feedback on the application situation.”
Dev2: “[The forum] It’s a good way to interact with people and understand… but

to document the development of the topic, it’s not good.”
Interestingly, however, while interns generally acknowledged the relevance of the

forum to interact with the community, they tended to check it less and less often as
their role in the project became more similar to that of a proper developer.

Int3: “The forum is an additional thing, I do not get any notifications, I have to go
check it myself.”

4.3 Synchronisation of Iterations

In Smart Campus, where the customer was actually a whole community, and as it also
happens in mobile app development more in general (let us think of the wealth of
apps published on Apple’s App Store or on Google Play), the amount of user feed-
back escalated quickly: in our opinion, this has been one of the most disruptive ele-
ments in an effective synchronisation of the periods of UCD and Agile. As a side
note, we report that feedback management and prioritisation is often mentioned in the
software engineering community (e.g. [19, 29]) as a major issue in Agile projects.

At least in the first stages of Smart Campus, some members of the management
team were appointed to review user feedback and prioritise it before passing it on to
designers; this contributed to complicating the attempt of designers to find a suitable
balance with the development pace. As a result, the development team sometimes
took design decisions on their own, proactively checking the forum and looking for
suggestions to implement or bugs to fix without waiting for the designers or the man-
agement to filter the information for them, but rather relying on the users’ community

contribution; the design team then resorted to many ad-hoc design interventions per-
formed through a face-to-face interaction with one of the developers requesting it.

D2: “To read the situation […] of some application that I am developing in part
[…] I read the application topic to understand if there are some problems”

Despite developers being generally sensitive to HCI themes, this situation often
caused parts of the apps to be modified in subsequent iterations in order to better fit
the holistic UX design, thus requiring the same piece of interface to be implemented
over and over again, each time differently. Different studies prove that the synchroni-
sation of UCD and Agile can indeed be complex: for instance, in [12], the length of
iterations in the two approaches and their “different timescales” are identified as fac-
tors contributing to the difficulties in aligning designers and developers; however, the
authors report development being significantly slower at prototyping than design,
while we experienced the opposite situation.

In fact, what was discussed earlier about the perception of community involve-
ment also influenced the struggle for effective feedback management, especially af-
fecting how feedback was returned to users. Students in fact often asked for more
transparency on the project organisation and for greater feedback about their sugges-
tions; the developers however claimed that these aspects were ensured in the forum.
Actually, suggestions provided on the forum were either addressed directly by devel-
opers or mediated by designers; in both cases, a ticket was created in an internal sys-
tem and was then closed upon solution of the issue. However, users had no way to
access these tickets or to know whether their proposals were being taken into account
unless someone from the lab explicitly notified this again on the forum, which was
infrequent. The situation was expected to improve with the introduction of GitHub, as
the ticketing system became public, yet this approach remained quite obscure for
users, as if the project team did not perceive the need to keep them informed about the
outcome of their suggestions.

5 Discussion

The present work has discussed a project adopting both UCD and Agile in the context
of mobile application development for a user community: reflecting on such experi-
ence has allowed identifying three main communication breakdowns that may hamper
the fruitful integration of the two approaches if the user/customer is no longer unique-
ly identified, namely a variable interpretation of user involvement, a mismatch in the
value of documentation, and a misalignment in iteration phases. We acknowledge that
the data we presented are to be conceived within the specific context of our case
study: yet, the three themes are also discussed in literature from different points of
view, even though not systematically. Therefore, given the data collected from the
project and the literature review that reinforced them, we propose some considera-
tions on how to favour the convergence of UCD and Agile in a setting oriented to-
wards a user community and to leverage on its benefits.

5.1 User Involvement

We have seen the difficulties in defining the role of the Smart Campus user communi-
ty and how these affected several aspects of the project. Misunderstandings in user
involvement have been echoed also in the literature: for instance, authors debate on
the extent of user/customer involvement both in the UCD [14, 24] and in the Agile
perspectives [12]. In the case of the integration of UCD and Agile for a user commu-
nity, we propose to draw inspiration from participatory design [23] in its intrinsic
familiarity with the involvement of a variety of users, each representing its own needs
and values, and with the resulting complexity. This was attempted also in Smart
Campus by seeding a user community that could communicate directly with the de-
velopers through the forum and the beta testing experimentation. We believe that the
availability of a platform such as the forum, supporting the dialogue not only between
the community and the project team, but also within the members of the community,
has been beneficial for the maturation of a sense of ownership of the users with re-
spect to the applications and for a more lively discussion about the needs of the com-
munity itself.

We have also referred to our instantiation of participatory development [16], i.e.
integrating users in the development team by having interns in the lab. This peculiar
context has in our opinion given some advantages to the development process: by
providing a direct, explicit link between the project team and the community, interns
allowed mutual learning to take place and contributed a domain knowledge that re-
sulted in a more informed feedback management; on the other hand, however, as
found in [4, 23], such bond with the community became less and less meaningful as
the time spent by students in the lab passed and they transformed into developers.

 We acknowledge that the nature of Smart Campus as a funded R&D project put it
in a privileged position that could afford having interns from a largely technically
skilled user community as part of team. Yet, despite Smart Campus being a very
specific case, we argue that, particularly when addressing a user community as it is
often the case in mobile app development, informing the design and development
process with participatory elements is still a valid suggestion and, retaining the rich-
ness and articulation of the voices of the community, is likely to be a sustainable
approach in the long term.

This also provides a possible answer to the concerns appearing in literature about
the customer’s role in Agile: this figure is entitled to steer the direction of the project
by redefining and re-prioritising his/her own requirements even while development is
on-going [3], but at the same time he/she is overwhelmed by responsibility [31],
his/her actual representativeness is questioned [4, 50, 46] and he/she is likely not to
have the competence to exert such decision-making power, to the point that some
authors have suggested that a member of the development team is most suited to play
this role [51] instead. We believe that the context of mobile application development
might open further possibilities if the community is composed of technically skilled
people, as it was partly the case in Smart Campus: in this case, in fact, the decision-
making power of users can be extended to cover choices that concern not only design,
as it happens in participatory design, but also development.

5.2 Documentation

In our experience documentation can be kept to a minimum, as encouraged by the
Agile principles [3, 34], and intended only for internal use as long as the development
process is confined within a lab, as it was in our case. Yet, if we envision a scenario
in which users are active participants engaged in participatory development, docu-
mentation becomes instrumental [41], especially for coordinating the evolution of an
open piece of software; the theme of geographical distribution is by the way also
presented in [20] as one of the main differences between the open source and the
Agile approaches. Furthermore, in [32] authors highlight that shifting to a distributed
team, and thus having to create high-quality documentation and specifications, “re-
quires different types of competences than simply expertise in programming and
concomitant tacit knowledge”: professional identities and work practices change, as
the “articulation work” required to coordinate becomes a larger share of regular work.

5.3 Synchronisation of Iterations

We have also seen how the amount of user feedback coming from a community can
quickly escalate and how handling it can affect the smoothness of the development
process. Despite information loss in feedback management being unavoidable [29],
we believe that an organisational culture informed by participatory design is likely to
appropriately recognise the value in this continuous feedback and effectively handle
it, integrating the users’ voice while retaining as much as possible of its articulation.
This context may also ensure greater transparency over the development process,
showing in an organic way what the outcome of the feedback and suggestions provid-
ed by the community was and therefore establishing a dialogue with users, rather than
having communication flowing just unidirectionally as it happened in the Smart
Campus forum.

Indeed, how to effectively achieve this remained an open point in Smart Campus,
as the project team was not able to envision a lightweight process for feedback im-
plementation that did not interfere with the speed of the development pace; as a result,
design lagged behind development, differently from what reported in [12] and sug-
gested in [39, 51]. Yet, we believe that, as also shown by several suggestions in litera-
ture [e.g. 44], the management of user input can be facilitated if the integration of
UCD and Agile fully occurs only after the conceptual design has been finalised, i.e.
after the so-called “Iteration 0” [17], which can even be regarded as exceeding the
scope of Agile methods [44]. In Smart Campus, for instance, while the user research
was being performed, the backend functionalities of the platform were being devel-
oped as well. Once the conceptual design is ready, UCD can address the interface
design, while Agile can proceed with the implementation of the business logic. In our
opinion, it is likely that the feature-oriented framing of Agile is somehow too con-
straining in respect of the creativity and flexibility that characterise the early stages of
UCD. A critical point is however still present in the handover of the conceptual de-
sign from this stage, where UCD and Agile proceed in parallel, to the subsequent
iterations, where the two approaches merge.

5.4 Fostering Integration

We finally remark that as the integration between the UCD and Agile methodologies
occurs, a compromise seems to be needed between their respective understandings of
the user and the customer, both in terms of working practices [28] and in terms of
organisational vision, especially in the case where the user/customer is no longer
uniquely defined and is rather replaced by a community like in Smart Campus. In
fact, some authors advocate the establishment of a suitable managerial and organisa-
tional context as one of the conditions for the integration of UCD and Agile to effec-
tively happen [11, 28]. Clearly, an organisational culture that values participation and
recognises the relevance of user input throughout the whole design and development
process is likely to endorse a conceptual design that takes the users’ voice into ac-
count, acknowledging and actively addressing the issues related to the responsibility
towards users’ needs and to the risk of losing track of the holistic UX design over
time [11, 28].

In order to foster such a receptive organisational culture, we propose the adoption
of design thinking [9], a methodology grounded on a “human-centred design ethos”
that pervades all stages of a product lifecycle, from inspiration to ideation to imple-
mentation. This discipline leverages on “the designer’s sensibility and methods to
match people’s needs with what is technologically feasible” and marketable, ac-
knowledging the “value of a holistic design approach”. In his work, Brown emphasis-
es that design thinking is not just a prerogative of people in design schools, but is
rather an attitude that can be assimilated also by other professionals. For what con-
cerns specifically the integration of UCD and Agile, we believe that this perspective
can support an organisational context which empathises with users and endorses, both
in the project management and its team, a common awareness of elements such as the
relevance of user needs, a holistic UX vision, and a shared acceptance and ownership
of the conceptual design and ultimately of the product.

6 Conclusions

In this paper we have proposed three themes that can be used as an analytical tool in
the management and facilitation of projects involving UCD and Agile. Such themes,
or communication breakdowns, concern potential mismatches in the formalisation of
key concepts in the two approaches, namely the interpretation of user involvement,
the value of documentation, and the synchronisation of iterations; they emerged from
a case study in mobile application development for a user community and were rein-
forced with a literature review. We believe that reconciling them by promoting a
receptive organisational culture that draws inspiration from participatory design and
design thinking can be a fruitful way to effectively integrate UCD and Agile.

Acknowledgements

Smart Campus was funded by TrentoRISE. The analytical work presented in this
chapter has been possible thanks to the funding granted by the Italian Ministry of
Education, University and Research (MIUR) through the project “Città Educante”,
project code CTN01_00034_393801. We wish to thank the Smart Campus team and
all the students who contributed to the project.

References

1. Ambler, S. W. Introduction to user stories.
http://www.agilemodeling.com/artifacts/userStory.htm Accessed 11 December 2015.

2. Ambler, S. W. Agile/Lean Documentation: Strategies for Agile Software Development.
http://www.agilemodeling.com/essays/agileDocumentation.htm Accessed 6 November
2015

3. Beck, K. et al., Manifesto for Agile software development. http://www.Agilemanifesto.org
4. Beyer, H., Holtzblatt, K., & Baker, L. (2004). An Agile customer-centered method: rapid

contextual design. In Extreme Programming and Agile Methods-XP/Agile Universe
2004 (pp. 50-59). Springer Berlin Heidelberg.

5. Bjerknes, G., & Bratteteig, T. (1995). User participation and democracy: A discussion of
Scandinavian research on system development. Scandinavian Journal of information sys-
tems, 7(1), 1.

6. Bjørn, P., and Ngwenyama, O. Virtual team collaboration: building shared meaning, resolv-
ing breakdowns and creating translucence. Information Systems Journal 19, 3 (2009), 227–
253.

7. Bordin, S., Menéndez Blanco, M., and De Angeli, A. Catch me if you can: reconciling
Agile and UCD. https: //ucdandagile.files.wordpress.com/2014/10/ !nr2-nordichi2014-agile-
ucd-workshop-bordin.pdf, Workshop on the Integration of UCD and Agile Development,
NordiCHI 2014.

8. Bordin, S., Menéndez Blanco, M., and De Angeli, A. ViaggiaTrento: an application for
collaborative sustainable mobility. EAI Endorsed Transactions on Ambient Systems 14, 4
(10 2014).

9. Brown, T. (2008). Design thinking. Harvard business review, 86(6), 84.
10. Brown, J. M., Lindgaard, G., and Biddle, R. Collaborative events and shared artefacts:

Agile interaction designers and developers working toward common aims. In Agile Confer-
ence (AGILE), 2011, IEEE (2011), 87–96.

11. Cajander, Å., Larusdottir, M., & Gulliksen, J. (2013). Existing but not explicit-The user
perspective in Scrum projects in practice. In Human-Computer Interaction–INTERACT
2013 (pp. 762-779). Springer Berlin Heidelberg.

12. Chamberlain, S., Sharp, H., and Maiden, N. Towards a framework for integrating Agile
development and user-centred design. In Extreme programming and Agile processes in
software engineering, Springer Berlin Heidelberg (2006), 143-153.

13. Clark, H. H., & Brennan, S. E. (1991). Grounding in communication. Perspectives on
socially shared cognition, 13(1991), 127-149.

14. Damodaran, L. (1996). User involvement in the systems design process-a practical guide
for users. Behaviour & information technology, 15(6), 363-377.

15. De Angeli, A., Bordin, S., and Menéndez Blanco, M. Reflections over a socio-technical
infrastructuring effort.

http://homes.di.unimi.it/cslab/copda2014/submissions/submissions/copda2014_submission
_ 11.pdf, Workshop on Cultures of Participation in the Digital Age, AVI 2014.

16. De Angeli, A., Bordin, S., and Menéndez Blanco, M. Infrastructuring participatory devel-
opment in information technology. In Proceedings of the 13th Participatory Design Con-
ference: Research Papers-Volume 1, ACM (2014), 11–20.

17. Fox, D., Sillito, J., and Maurer, F. Agile methods and user-centered design: How these two
methodologies are being successfully integrated in industry. In Agile, 2008. AGILE’08.
Conference, IEEE (2008), 63–72.

18. Frayling, C. (1993). Research in art and design. London: Royal College of Art.
19. Gartner, S., and Schneider, K. A method for prioritizing end-user feedback for require-

ments engineering. In Cooperative and Human Aspects of Software Engineering (CHASE),
2012 5th International Workshop on, IEEE (2012), 47–49.

20. Goldman, R., and Gabriel, R. P. Innovation happens elsewhere: Open source as business
strategy. Morgan Kaufmann, 2005.

21. Gothelf, J. Lean UX: Applying Lean principles to improve user experience. O’Reilly Me-
dia, Inc., 2013.

22. Gould, J. D., & Lewis, C. (1985). Designing for usability: key principles and what desi-
gners think. Communications of the ACM, 28(3), 300-311.

23. Gregory, J. (2003). Scandinavian approaches to participatory design. International Journal
of Engineering Education, 19(1), 62-74.

24. Iivari, J., and Iivari, N. Varieties of user-centredness: an analysis of four systems develop-
ment methods. Information Systems Journal 21, 2 (2011), 125–153.

25. Jurca, G., Hellmann, T. D., and Maurer, F. Integrating Agile and user-centered design: A
systematic mapping and review of evaluation and validation studies of Agile-UX. In Agile
Conference (AGILE), 2014, IEEE (2014), 24–32.

26. Kane, D. (2003, June). Finding a place for discount usability engineering in agile develop-
ment: throwing down the gauntlet. In Agile Development Conference, 2003. ADC 2003.
Proceedings of the (pp. 40-46). IEEE.

27. Kujala, S. (2003). User involvement: a review of the benefits and challenges. Behaviour &
information technology, 22(1), 1-16.

28. Lárusdóttir, M. K., Cajander, Å., & Gulliksen, J. (2012). The big picture of UX is missing
in Scrum projects. In Proceedings of the 2nd international workshop on the interplay be-
tween user experience evaluation and software development, in conjunction with the 7th
Nordic conference on human-computer interaction. http://ceur-ws.org/Vol-922/I-UxSED-
2012-Proceedings.pdf#page=49 Accessed on 11 December 2015

29. Lee, M. J., and Ko, A. J. Representations of user feedback in an Agile, collocated software
team. In Cooperative and Human Aspects of Software Engineering (CHASE), 2012 5th In-
ternational Workshop on, IEEE (2012), 76–82.

30. Liikkanen, L. A., Kilpiö, H., Svan, L., and Hiltunen, M. Lean UX: the next generation of
user-centered agile development? In Proceedings of the 8th Nordic Conference on Human-
Computer Interaction: Fun, Fast, Foundational, ACM (2014), 1095–1100.

31. Martin, A., Biddle, R. and Noble, J. The XP customer role in practice: Three studies. In
Proc. ADC2004, IEEE (2004), 42-54.

32. Matthiesen, S., Bjørn, P., & Petersen, L. M. Figure out how to code with the hands of oth-
ers: recognizing cultural blind spots in global software development. In Proc. CSCW 2014,
ACM press (2014), 1107-1119.

33. McGinn, J. and Chang, A.R. RITE+Krug: A combination of usability test methods for
Agile design. Journal of Usability Studies, 8(3) (2013), 61-68.

34. McInerney, P. and Maurer, F. UCD in Agile projects: Dream team or odd couple? Interac-
tions, (2005), 19-23.

35. Memmel, T., Gundelsweiler, F. and Reiterer, H. Agile human-centered software engineer-
ing. In Proceedings of the 21st British HCI Group Annual Conference on People and Com-
puters: HCI... but not as we know it-Volume 1, British Computer Society (2007), 167-175.

36. Menéndez Blanco, M., Bordin, S., and De Angeli, A. Sociotechnical infrastructuring for
participation. Workshop on Cooperative Technologies in Democratic Processes - Beyond e-
Voting, COOP 2014.
http://www.iisi.de/fileadmin/IISI/upload/IRSI/2014Vol11Iss1/IRSI_Vol11_Iss1_Menendez
_Bordin_De_Angeli_Socio-technical_infrastructuring_for_participation.pdf Accessed on
11 December 2015

37. Miller, L. Case Study of Customer Input For a Successful Product. In Proceedings of Agile
(2005), 225-234.

38. Neustaedter, C., & Sengers, P. (2012, June). Autobiographical design in HCI research:
designing and learning through use-it-yourself. In Proceedings of the Designing Interactive
Systems Conference (pp. 514-523). ACM.

39. Nodder, C. and Nielsen, J. Agile usability: Best practices for user experience on Agile
development projects. Nielsen Norman Group, 2010.

40. Norman, D. A. Cognitive engineering. User centered system design (1986), 31–61.
41. Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction design: beyond human-computer

interaction. John Wiley & Sons.
42. Salah, D., Paige, R. F., & Cairns, P. (2014, May). A systematic literature review for agile

development processes and user centred design integration. In Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment in Software Engineering (p. 5).
ACM.

43. Schwaber, K., and Sutherland, J. The Scrum guide. Scrum.org, 2011.
44. Schwartz, L. (2013). Agile-User Experience Design: an Agile and User-Centered Process?.
45. Schwartz, L. (2014). Agile-User Experience Design: does the involvement of usability

experts improve the software quality? International Journal on Advances in Software 7
(3&4), 456-468

46. Schwartz, L. Agile-user experience design: With or without a usability expert in the team?
In Proc. ICSEA 2013, IARIA (2013), 359-363.

47. Selic, B. (2009). Agile documentation, anyone?. Software, IEEE, 26(6), 11-12.
48. Sharp, H., & Robinson, H. (2004). Integrating user-centred design and software engineer-

ing: a role for extreme programming?
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4554&rep=rep1&type=pdf

49. Smith, C. P. (1992). Motivation and personality: Handbook of thematic content analysis.
Cambridge University Press.

50. Sohaib, O., & Khan, K. (2010, June). Integrating usability engineering and agile software
development: A literature review. In Computer design and applications (ICCDA), 2010 in-
ternational conference on (Vol. 2, pp. V2-32). IEEE.

51. Sy, D. Adapting usability investigations for Agile user-centered design. Journal of Usabil-
ity Studies, 2, 3 (2007), 112-132.

52. Sy, D., & Miller, L. Optimizing Agile user-centred design. In CHI'08 extended abstracts on
Human factors in computing systems, ACM (2008), 3897-3900.

53. Teli, M., Bordin, S., Blanco, M. M., Orabona, G., & De Angeli, A. (2015). Public design of
digital commons in urban places: A case study. International Journal of Human-Computer
Studies, 81, 17-30.

54. Ungar, J.M. and White, J.A. Agile user centered design: Enter the design studio – A case
study. In Proc. CHI 2008, ACM Press (2008), 2167-2177.

55. Verdiesen, B. (2014). Agile User Experience.
56. Wolkerstorfer, P. et al., Probing an Agile usability process. In Proc. CHI 2008, ACM Press

(2008), 2151-2157.

